Adic semidualizing complexes

نویسندگان

چکیده

We introduce and study a class of objects that encompasses Christensen Foxby’s semidualizing modules complexes Kubik’s quasi-dualizing modules: the [Formula: see text]-adic complexes. give examples equivalent characterizations these objects, including characterization in terms more familiar property. As an application, we proof existence dualizing over complete local rings does not use Cohen Structure Theorem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relations between Semidualizing Complexes

We study the following question: Given two semidualizing complexes B and C over a commutative noetherian ring R, does the vanishing of Ext R (B, C) for n ≫ 0 imply that B is C-reflexive? This question is a natural generalization of one studied by Avramov, Buchweitz, and Şega. We begin by providing conditions equivalent to B being C-reflexive, each of which is slightly stronger than the conditio...

متن کامل

Descent of Semidualizing Complexes for Rings with the Approximation Property

Let R be a commutative noetherian local ring with completion b R. When R has the approximation property, we prove an approximation result for complexes with finitely generated homology. This is used to investigate descent of semidualizing complexes from b R to R. We show that, if R has the approximation property, then there is a bijective correspondence between semidualizing b R-complexes and s...

متن کامل

Adic Approximation of Complexes, and Multiplicities

In [2, Section 1.6] Peskine and Szpiro prove a theorem on adic approximations of finite free resolutions over local rings which, together with M. Artin's Approximation Theorem [1], allows them to "descend" modules of finite projective dimension over the completions of certain local rings to modules of finite projective dimension over finite etale extensions of those rings. In this note we will ...

متن کامل

Homological Aspects of Semidualizing Modules

We investigate the notion of the C-projective dimension of a module, where C is a semidualizing module. When C = R, this recovers the standard projective dimension. We show that three natural definitions of finite Cprojective dimension agree, and investigate the relationship between relative cohomology modules and absolute cohomology modules in this setting. Finally, we prove several results th...

متن کامل

p-adic Shearlets

The field $Q_{p}$ of $p$-adic numbers is defined as the completion of the field of the rational numbers $Q$ with respect to the  $p$-adic norm $|.|_{p}$. In this paper, we study the continuous and discrete $p-$adic shearlet systems on $L^{2}(Q_{p}^{2})$. We also suggest discrete $p-$adic shearlet frames. Several examples are provided.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra and Its Applications

سال: 2021

ISSN: ['1793-6829', '0219-4988']

DOI: https://doi.org/10.1142/s021949882250089x